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Robert Cardillo

National Geospatial-Intelligence Agency, Director

“If NGA were to attempt to manually sort through all the data it will receive
in the next 20 years, it would have to hire 8 million analysts.”

Source: http://www.nationaldefensemagazine.org/articles/201 7/6/5/qeosoatiaI-aqencv—to—share—historicaI—data—with—private—sector—start—up%



http://www.nationaldefensemagazine.org/articles/2017/6/5/geospatial-agency-to-share-historical-data-with-private-sector-start-ups
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Our Motivation

Increasing resolution of satellite images to

30 cm/pixel | Cloud: $/1TB Market ‘o
$5.3B
Increasing number of satellites in orbit
Hundreds of millions km? of imagery are =
collected every day SR ™ - s2.78

Greater proliferation of machine-based e
analysis due to scalable cloud solutions - ‘

Emerging market with analytics is a great 2006 2012 2020
opportunity for unicorns!
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Our Mission

Our mission is to train machines to analyze satellite images to generate insights
and provide actionable intelligence

We offer analytics of any Area of Interest
for a variety of objectives:
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Aircraft Analysis § ] Manufacturing Index
John F. Kennedy Airport, US China
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Economic Indexes (production monitoring)
National security and safety

Construction site oversee kg
Defense operations (uncommon target detection) a ih:",:;;.yyz;"
Industrial facility analysis | ] |
Disaster site damage assessment
Environmental changes

Agricultural production

Natural resources (e.g. oil storage, coal, water)

.

@ Container Analysis [ Construction Change
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Deep Neural Networks for Generalization

Deep neural networks are statistical models with a high capacity to capture hidden underlying patterns in
provided training data that can be exploited to predict and generalize over previously unseen data.
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Our Solutions using ESA’s Sentinels
Sentinel-1 SAR and Sentinel-2 based algorithms

We apply image processing, machine learning, and deep neural networks to provide:

e Generalized change detection - RGB images, SAR images, derived indices, ...

e Scene semantic segmentation into regions of interest - clouds, roads, urban and non-urban
areas, water

e Detection - coal, lithium, ships, gas flares, oil pads, spruce beetle

e Derivation of indices - e.g. vegetation index, and proprietary indices

e Recently also monitoring of air pollution using Sentinel 5P - utilizing preprocessed Level 2
products of pollutants’ concentrations
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Google Cloud Platform




SPACEKNOW
Sentinel-5P

SpaceKnow worked as a part of validation effort, and performed large-scale validation of formaldehyde
product with respected to ECMWF's reanalyzed CAMS dataset of HCHO concentrations.
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Sentinel-5P validation: examples

Temporal validation
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Fig.: Spatial map of bias in temporally averaged dataset
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Sentinel-5P validation: examples
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Sentinel-5P case study: North-east China pollution
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Sentinel-5P case study: North-east China pollution
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[ | *
T TechCrunch FT rxavcia FORTUNE ThetvashingtonPost
“Commission your “SpaceKnow to track “What Happens When “A stunning new look
own traffic and African economy by You Combine Artificial from space at nature,
construction studies satellite” Intelligence and North Korea and
without ever leaving Satellite Imagery” Chipotle”
bed using
SpaceKnow”
BloombergBusiness Som D|g|ta[G[0be~

“Hedge Funds Look to
Space With New
China Economy

Gauge”

“Most of SpaceKnow's
work is for financial
clients who want to

track large economic
projects such as
multiple factories,
mines and ports.”

“SpaceKnow: Using
GBDX to bring
transparency to the
global economy”
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